Knowledge-Based, Central Nervous System (CNS) Lead Selection and Lead Optimization for CNS Drug Discovery
نویسندگان
چکیده
The central nervous system (CNS) is the major area that is affected by aging. Alzheimer's disease (AD), Parkinson's disease (PD), brain cancer, and stroke are the CNS diseases that will cost trillions of dollars for their treatment. Achievement of appropriate blood-brain barrier (BBB) penetration is often considered a significant hurdle in the CNS drug discovery process. On the other hand, BBB penetration may be a liability for many of the non-CNS drug targets, and a clear understanding of the physicochemical and structural differences between CNS and non-CNS drugs may assist both research areas. Because of the numerous and challenging issues in CNS drug discovery and the low success rates, pharmaceutical companies are beginning to deprioritize their drug discovery efforts in the CNS arena. Prompted by these challenges and to aid in the design of high-quality, efficacious CNS compounds, we analyzed the physicochemical property and the chemical structural profiles of 317 CNS and 626 non-CNS oral drugs. The conclusions derived provide an ideal property profile for lead selection and the property modification strategy during the lead optimization process. A list of substructural units that may be useful for CNS drug design was also provided here. A classification tree was also developed to differentiate between CNS drugs and non-CNS oral drugs. The combined analysis provided the following guidelines for designing high-quality CNS drugs: (i) topological molecular polar surface area of <76 Å(2) (25-60 Å(2)), (ii) at least one (one or two, including one aliphatic amine) nitrogen, (iii) fewer than seven (two to four) linear chains outside of rings, (iv) fewer than three (zero or one) polar hydrogen atoms, (v) volume of 740-970 Å(3), (vi) solvent accessible surface area of 460-580 Å(2), and (vii) positive QikProp parameter CNS. The ranges within parentheses may be used during lead optimization. One violation to this proposed profile may be acceptable. The chemoinformatics approaches for graphically analyzing multiple properties efficiently are presented.
منابع مشابه
P134: Central Nervous System and Blood Biomarker in Stroke, CNS Bleeding, Epilepsy, and Traumatic CNS Injury; MicroRNAs
A Central nervous system (CNS) hemorrhage is bleeding in or around the brain and spinal cord. Reasons of CNS hemorrhage include high blood pressure, cancers, drug abuse, abnormally weak blood vessels that leakage, and trauma. Regression of CNS bleeding was confirmed to be relatively repetitive in patients with severe FV, FX, FVII and FXIII deficiencies. Generally in CNS hemorrhage, radiological...
متن کاملLipid based nanoparticles for treatment of CNS diseases: review Article
Introduction: Central Nervous System (CNS) is one of the most important organs which is managing so many functions in human body. So, impairment of its function may results in several disorders in body, or CNS diseases, which are considered very important. CNS diseases are divided into many different groups and each group is treated with its own related medication. Some drugs that are used for ...
متن کاملA Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets
Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screen...
متن کاملIonotropic Glutamate Receptors and their Role in Neurological Diseases
Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...
متن کاملCentral nervous system relapse prophylaxis in acute lymphoblastic leukemia (ALL) intrathecal chemotherapy with and without cranial irradiation
Background: Central Nervous System (CNS) relapse in acute lymphoblastic leukemia was significantly decreased due to the use of new chemotherapyeutic agents, Intrathecal chemotherapy and cranial irradiation. The purpose of this study was to compare the effectiveness of intrathecal (IT) CNS chemotherapy alone versus combination of IT chemotherapy with cranial irradiation for prevention of CNS rel...
متن کامل